FUNCTION MACHINES

OCR GSCE – Monday 9 November 2020 – Paper 6 (Calculator) Higher Tier

1.

11	(a)	(i)	7	4	M2 for $3x + 15 = 2(x + 11)$ oe or M1 for $3x + 15$ or $2(x + 11)$ oe M1 for a productive step towards solving <i>their</i> linear equation	Starting equation must have x on both sides e.g. from $3x + 15 = 2(x + 11)$: M1 for $2x + 22$ or $x + 15 = 22$ or $3x = 2x + 7$ or $1.5x + 7.5 = x + 11$ e.g. from $3x + 15 = 2x + 11$: M1 for $x + 15 = 11$ or $3x = 2x - 4$
					M2 for at least two complete trials using the same inputs for both functions or M1 for one complete trial using the same input for both functions A1 for at least one correct evaluation for A and one for B	
		(ii)	Because $3x + 15$ and $2(x + 11)$ are <u>not</u> equivalent oe OR $3x + 15 = 2(x + 11)$ only has one solution oe	1		If not using the words 'not equivalent', must clearly imply that the two expressions will not be equal for all values of x The mark is unlikely to be awarded unless algebra is used
	(b)		p = 5, q = 3	3	B1 for $p = 5$ or $q = 3$ M1 for $q(x + p)$ oe or $[3x + 15 =] 3(x + p)$ or $[3x + 15 =] q(x + 5)$ If no working SC1 for $p = 3$ and $q = 5$ as answers	May be seen with a particular value of x , eg. $q(2 + p)$

OCR GSCE – Tuesday 5 November 2019 – Paper 4 (Calculator) Higher Tier

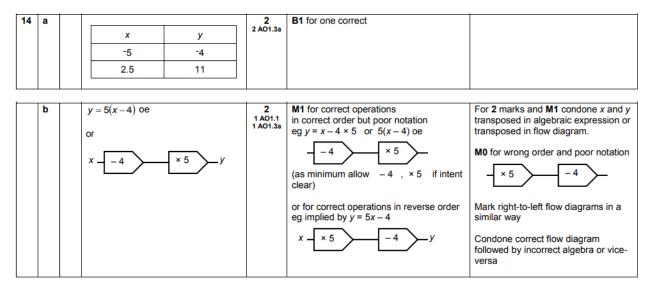
9	(a)	6	3	B1 for $3(k-4) = k$ oe M1 for solving <i>their</i> equation to get k on one side and numbers on the other e.g. $3k-k=12$	also $\frac{k}{3} + 4 = k$ condone use of other letters
	(b)	$\frac{y}{3}$ + 4 oe	2	M1 for ÷ 3 and + 4 e.g. $\frac{y+4}{3}$	
	(c)	16	2	B1 for output of first function as 36 or $3(3(n-4)-4) = 96$ or better	e.g. 9 <i>n</i> – 48 = 96

OCR GSCE – Thursday 6 June 2019 – Paper 5 (Non-Calculator) Higher Tier

3.

12	(a)	$\frac{x+2}{3}$ or	$\frac{x}{3} + \frac{2}{3}$ final answer	2	M1 for $y + 2 = 3x$ or $x + 2 = 3y$ or for $x = 3y - 2$ or for $[x =] \frac{y + 2}{3}$ If 0 scored, SC1 for answer $y = \frac{x}{2} - 7$	For 2 marks, condone answer $y = \frac{x+2}{3}$ Allow M1 for correct reverse flowchart with arrows reversed $+3 + 2$
	(b)	-5		5	M3 for $2(3x-2+7) = 4x$ oe or $\frac{2x-7+2}{3} = x$ oe or M2 for $2(3x-2+7)$ oe seen or $\frac{2x-7+2}{3}$ oe seen or M1 for $3x-2$ or $3x+5$ oe seen or $2x-7$ or $2x-5$ oe seen M1dep for correct rearrangement of <i>their</i> eqn with at least 2 terms in x to $ax+b=0$ or better	For method marks, condone inclusion of multiplication signs Method must be seen in working space for part (b) If brackets omitted then allow recovery for method For M3 eg $2x - 7 = 3x - 2$ M1dep on at least M1 earned previously e.g. $2(3x - 2) + 7 [= 4x]$ scores M1 and then can earn M1 dep if they then correctly rearrange to $ax = b$

OCR GSCE – Tuesday 6 November 2018 – Paper 4 (Calculator) Higher Tier


4.

11	(a)	7.5 oe	2	B1 for input to B as 19	Could be in diagram
	(b)	3(2x + 3) oe	2	B1 for output from A as 2x + 4 oe	Could be in diagram

OCR GSCE – Tuesday 12 June 2018 – Paper 6 (Calculator) Higher Tier

17	(a)	$\frac{x}{5}$ – 14 oe	2	M1 for $\frac{x}{5}$ If 0 scored then SC1 for $\frac{x-14}{5}$ oe	Condone use of another letter for M1 max Must use x in SC1 0 for $x - 14 \div 5$
	(b)	-17.5 or $-\frac{35}{2}$ oe nfww	3	M1 for $5(k' + 14) = k'$ or $k' = \frac{k}{5} - 14$ M1FT for $4k' = -70$ or better or re-arrangement of <i>their</i> comparable $f(k) = g(k)$ equation into the form $ak = b$. M1FT solving their $ak = b$ Alternative (FT as above): M1 for $k' = \frac{k}{5} - 14$ M1FT for $\frac{4k}{5} = -14$ or better M1FT solving their $ak = b$ Trials or no working: SC3 for -17.5	eg 5k+14=k becomes 4k=-14 and then k=-3.5 scores M0 M1FT M1FT k + 70 = k is not comparable Answers may be in decimal or fractional form but fractions equating to integers should be simplified

OCR GSCE - Tuesday 13 June 2017 - Paper 6 (Calculator) Higher Tier

С	5ρ – 3 as final answer	4 1 AO1.3b 3 AO3.1b	M1 for $2p + 4 - 4$ soi M1 for their $2p \times 5$ soi M1 for their $10p \div 2$ M1 for their $5p - 3$ Maximum 3 marks if answer incorrect	Output of function A is 10 <i>p</i> implies first M1M1
			Alternative method: M1 for $2(m+3)$ soi M1 for $\frac{their 2(m+3)}{5} + 4$ soi M1 for their $\frac{2(m+3)}{5} + 4 = 2p + 4$ or better	Use of function A Use of function B with output of A Equating their output of B with $2p + 4$
			M1FT for rearranging <i>their</i> equation to isolate <i>m</i> Maximum 3 marks if answer incorrect	Their equation must be of form $\frac{am+b}{5}+4=2p+4$ oe where $a\neq 0$ and $b\neq 0$, leading to $(m=)\frac{10p-b}{a}$ and then simplified if possible Accept another letter used consistently for m or p but not m and p interchanged

OCR GSCE – Sample Papers – Paper 4 (Calculator) Higher Tier

7.

8	(a)	(i)	-1	2 1 AO1.3a 1 AO3.1a	M1 for use of – 5 and ÷ 2 soi Or M1 for answer 3	
		(ii)	-5	3	M1 for 2x + 5	
				1 AO1.3a 2 AO3.1a	M1 for $x = their'2x + 5'$ and solve	
	(b)		5, 10	3	M1 for $3a + b = 5$ and $7a + b = 25$	Condone $\frac{x^2+1}{2}$ across the two
				1 AO1.3a 2 AO3.1a	M1 for attempt to solve	2 across the two
						boxes for 3 marks
					Or	
					M1 input increases by 4; output increases by 20	
					$\textbf{M1}$ so one box must have $\times5$ for the arithmetic sequence	

AQA GSCE – Sample Paper 3 (Calculator) Higher Tier

	$x^2 + 6$ or $(x-3)^2$	M1	
	$x^2 - 3x - 3x + 9$	M1	4 terms with 3 correct
19	6 <i>x</i> < 3	M1dep	oe linear inequality dep on two quadratic expressions ft their quadratic expressions
	x < 0.5	A1	oe